Step of Proof: adjacent-cons
11,40
postcript
pdf
Inference at
*
2
1
I
of proof for Lemma
adjacent-cons
:
1.
T
: Type
2.
x
:
T
3.
y
:
T
4.
u
:
T
5.
L
:
T
List
6. 0 < ||
L
||
7.
x
=
u
&
y
= hd(
L
)
i
:{0..((||
L
||+1) - 1)
}. (
x
= [
u
/
L
][
i
] &
y
= [
u
/
L
][(
i
+1)])
latex
by ((((InstConcl [0])
CollapseTHEN (((Reduce 0)
CollapseTHEN (Auto'))
))
)
CollapseTHEN (((
C
DVar `L')
CollapseTHEN (((All Reduce)
CollapseTHEN (Auto
))
))
))
latex
C
.
Definitions
#$n
,
x
:
A
.
B
(
x
)
,
tl(
l
)
,
P
&
Q
,
x
:
A
B
(
x
)
,
||
as
||
,
i
j
,
[]
,
l
[
i
]
,
i
z
j
,
i
<z
j
,
hd(
l
)
,
s
=
t
,
a
<
b
,
type
List
,
Type
origin